Turán measures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Turán Problems

For a fixed graph H, we define the rainbow Turán number ex∗(n,H) to be the maximum number of edges in a graph on n vertices that has a proper edge-colouring with no rainbow H. Recall that the (ordinary) Turán number ex(n,H) is the maximum number of edges in a graph on n vertices that does not contain a copy of H. For any non-bipartite H we show that ex∗(n,H) = (1+o(1))ex(n,H), and if H is colou...

متن کامل

On two Turán Numbers

Let Hð3;1Þ denote the complete bipartite graph K3;3 with an edge deleted. For given graphs G and F , the Turán numbers exðG; FÞ denote the maximum number of edges in a subgraph of G containing no copy of F . We prove that exðKn;n;Hð3; 1ÞÞ ð4= ffiffiffi 7 p n þOðnÞ 1:5119n þOðnÞ and that exðKn;Hð3; 1ÞÞ ð1=5Þ ffiffiffiffiffi 15 p n þOðnÞ 0:7746n þ OðnÞ, which improve earlier results of Mubayi-Wes...

متن کامل

ℓ-Degree Turán Density

Access to the published version may require subscription. Abstract. Let Hn be a k-graph on n vertices. For 0 ≤ ℓ < k and an ℓ-subset T of V (Hn), define the degree deg(T) of T to be the number of (k − ℓ)-subsets S such that S ∪ T is an edge in Hn. Let the minimum ℓ-degree of Hn be δ ℓ (Hn) = min{deg(T) : T ⊆ V (Hn) and |T | = ℓ}. Given a family F of k-graphs, the ℓ-degree Turán number ex ℓ (n, ...

متن کامل

Bounds on Turán determinants

Let μ denote a symmetric probability measure on [−1, 1] and let (pn) be the corresponding orthogonal polynomials normalized such that pn(1) = 1. We prove that the normalized Turán determinant ∆n(x)/(1−x), where ∆n = pn−pn−1pn+1, is a Turán determinant of order n− 1 for orthogonal polynomials with respect to (1− x2)dμ(x). We use this to prove lower and upper bounds for the normalized Turán deter...

متن کامل

Supersaturation For Ramsey-Turán Problems

For an l-graph G, the Turán number ex(n,G) is the maximum number of edges in an n-vertex l-graph H containing no copy of G. The limit π(G) = limn→∞ ex (n,G)/ ( n l ) is known to exist [8]. The Ramsey-Turán density ρ(G) is defined similarly to π(G) except that we restrict to only those H with independence number o(n). A result of Erdős and Sós [3] states that π(G) = ρ(G) as long as for every edg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2003

ISSN: 0021-9045

DOI: 10.1016/s0021-9045(03)00042-x